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Abstract

We present a computationally efficient method for the treatment of electrostatic interactions

between a polarizable metallic electrode held at a constant potential and an electrolyte. In short,

the method combines a fluctuating uniform electrode charge with explicit images charges to account

for the polarization of the electrode by the electrolyte, and a constant uniform charge added to the

fluctuating uniform electrode charge to account for the constant potential condition. The method

is then used to calculate electron transport rates using Marcus theory.
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I. INTRODUCTION

Several simplifying approximations have been made when treating the elec-

trode/electrolyte interface within classical molecular dynamics simulations. The most

straightforward approach, in concept and implementation, have been to model the elec-

trode as a uniformly charged plane[1]. More advanced treatments have further included a

treatment of the atomically corrugated electrode surface[2, 3], or modeled the electrode sur-

face as a collection of atomic sites bearing partial charges contributing to the total electrode

charge[4–6] While computationally inexpensive and conceptually simple, these approaches

fail to capture the dispersion interactions between the electrolyte and the electrode, with po-

tentially significant impact ion the structure of the electrical double layer at the electrode[7].

One method, the so-called ”method of images”, does account for the polarization of the

electrode by the electrolyte[3, 7, 8]. In this method, a static image plane is defined - typically

coincident with the nuclear plane of the electrode surface. For each charge in the system

qi there is a corresponding image charge such that qimg = −qi. The interactions of all non-

image charges in the system, whether they are partial charges of the constituent atoms of an

electrolyte molecule or ionic charges, are included between all image charges as well as all

real charges. While the method does correctly account for the polarization of the electrode

by the electrolyte, the method can only model a charged electrode when the electrolyte has

a net charge[9, 10]. It should be noted that creating a fixed charge on the electrode, either

by applying a uniform charge to the electrode or through the image charges of an electrolyte

with a net charge, cannot correctly account for the electrode charge due to an imposed

constant potential. As we will show below, the correct charge distribution can be correctly

modeled by a combination of the two methods given specific simulation constraints.

An approach capable of modeling a polarizable charged electrode adjacent to a non-

neutral electrolyte has been formulated by Siepmann and Sprik,[11] and applied to bulk

simulations of a complete electrochemical cell by Reed et al.[12] In short, this method models

the electrode as a series of Gaussian charge distributions centered about the nuclear positions

of the electrode atoms. The charge on each electrode atom at each simulation time-step

is obtained by enforcing a constant potential at the electrode atoms. While this method

accurately reproduces the charge distribution within the electrode, it is computationally

expensive. Below we describe a method that quantitatively reproduces the results of Reed
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et al.[12, 13] without the expense of the iterative minimization of the system potential, or

otherwise using polarizable atomic potentials.

II. METHODS

A. The Model

FIG. 1: Electrochemical cell.

Consider an electrochemical cell composed of two parallel electrodes and intervening

electrolyte (Fig. 1). This cell consists of two electrodes; the left electrode (LE) located

at z = 0, and the right electrode (RE) located at z = D, both periodic in the x and y

dimensions. A charged atom of the bulk electrolyte (R), located at the position (0, 0, zR)

with charge qR, will induce a charge on the surface of the conducting electrodes. This

induced surface charge will create a potential equivalent to one where a charge qI = −qR is

located equidistant from the electrode surface, but within the electrode.[14] That is, the real

electrolyte charge R will induce a surface charge in the two electrodes creating a potential

equal to that created by a pair of image charges, RI and LI. These image charges will have

charge qI = −qR, located at (0, 0,−zR) and (0, 0, d1 + 2d2), such that d1 = z, d2 is the

distance of the real charge from electrode RE, and D = d1 + d2 is the distance between
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electrode LE and RE.

The above consideration does not account for the possibility of the primary image charges

of one electrode inducing secondary image charges in the opposing electrode, which in turn

can create further image charges in the first, and so on. As we will show in the following

discussion, these higher order image charges will be accounted for as part of the constant

potential constraint and through the treatment of the long range electrostatic interactions.

The electric field within the electrochemical cell can be found from the charge distribution

from within the cell (Eqtn. 1);

E(z) =
1

ǫ0

∫

ρ(z)dz. (1)

For a cell composed of discrete charges,

ρ(z∗i ) =
qi(z

∗

i )

A∆zi
, (2)

where q(z∗i ) is the discrete charge at the point z∗i on the interval ∆zi. The electric field is

then,

E(z) =
1

ǫ0A

∫ D

0

q(z∗i )

∆zi

dz =
1

ǫ0A
lim

∆zi→0

p
∑

i=1

(

qi(z
∗

i )

∆zi

)

∆zi, (3)

such that,
p
∑

i=1

∆zi = D (4)

for p partitions. When the electric field is integrated over the entire cell, the electric field

just inside the second electrode is

E(D) =
1

Aǫ0

(

qRE + qLE +
n
∑

i=1

qRi
+ 2

n
∑

i=1

qIi

)

=
1

Aǫ0

(

qRE + qLE −
n
∑

i=1

qRi

)

, (5)

where qLE and qRE are the charges induced on the surface of the left and right electrodes by

the n charges of the electrolyte, excluding primary images charges. And since the electric

field inside a conductor is 0,
n
∑

i

qRi
= qRE + qLE . (6)

The electrical potential across the electrochemical cell can be found from the electric

field,

Φ(z) = −
∫

E(z)dz. (7)
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Using the expression for the electric field from Equation 3,

Φ(z) = − 1

ǫ0A

∫ D

0

lim
∆zi→0

p
∑

i=1

(

qi(z
∗

i )

∆zi

)

∆zi = − 1

ǫ0A
lim

∆zj→0

p
∑

j=1

(

j
∑

i=1

qi(z
∗

i )

)

∆zj . (8)

Integrated over the entire cell, the potential is

Φ(D) = − 1

ǫ0A

n=1
∑

i

[

(−qRi
+ qLEi

) (zRi
) + (qLEi

) (D − zRi
)

]

, (9)

where qLEi
is the surface charge induced by the higher order images resulting from the ith

charge of the electrolyte on electrode LE such that,

qLE =

n=1
∑

i

qLEi
. (10)

Using the equality from Equation 6 and accounting for the constant potential drop, ∆V0,

across the cell,

∆V0 =
1

ǫ0A

[ n
∑

i

−qRi
zRi

+ (qLE)(D)

]

. (11)

If we express the constant potential in terms of the electrode charge, Q0, of an equivalent

capacitor,

∆V0 =
Q0

ǫ0A
D, (12)

and use the equality from Equation 6 to write the electrode charges in terms of the electrolyte

charges,

qEL =
n
∑

i=1

qRi
zRi

D
+ Q0, qER =

n
∑

i=1

qRi

(

1 − zRi

D

)

− Q0. (13)

Equations 13 are the primary result of the analysis. To summarize, assuming two parallel

electrodes, an intervening electrolyte of discrete charges, and that primary image charges

are induced on each electrode, then the total charge of the higher order images charges are

equal to the total of the electrolyte charge. This is a seemingly a trivial conclusion. If it were

not so, then the cell would have created charge. More importantly though, Equations 13

show that the total electrolyte charge is shared between the electrodes in proportion to the

position of the center of electrolyte charge. This is a very useful result when faced with

modeling charge transfer in the cell. When charge is transferred from the electrolyte to

the electrode in the course of a simulation, it isn’t immediately apparent how it should be

done. What Equations 13 show is that the charge is transferred to both electrodes, and
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FIG. 2: Force experienced by a point charge from a point charge (circles) of equal charge, and from

a charged wall (squares) of equal charge.

the amount of charge transferred to each is proportional to the position of the transferring

species within the cell. This position dependence has been demonstrated by Reed et al.[13],

albeit as an imperial observation of their model. We have shown that this dependence is an

a prior consequence of the constant potential boundary condition.

Unfortunately, Equations 13 don’t show how this charge is distributed on the surface

of the electrode. Considering the charge induced on the surface of the electrodes by the

electrolyte was initially assumed to be correctly described by the primary image charges,

how then should the charge induced by the opposing electrodes themselves be modeled?

Figure 2 shows the force (circles) experienced by a test charge, q1 = e−,located at (0, 0, z)

due to another charge, q2 = −q1, located at (0, 0, 0), as a function of the separation, z.

Also shown is the force (squares) experienced by the same test charge due to a charged wall

composed of a 10 by 10 array of atoms located at (x, y, 0) arranged in a simple cubic lattice

with a net charge of −q1. These data were collected for systems which were periodic in

the x and y dimension such that Lx=Ly, and non-periodic in the z dimension. The length

and force in Figure 2 have been normalized to Lx,y and q1q2

Aǫ02
- the force due to a uniformly

charged wall - respectively.
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At large enough separation, the array of periodic images of the higher order image charges

should appear as a uniformly charge wall. From Figure 2 we see this occurs at a length

equivalent to one to two periodic images. Approximating the images as a uniformly charged

plane has been used to treat primary images at separations where z > min(Lx, Ly)[15].

Reed et al. have shown that the higher order image charges are uniformly distributed over

the entire electrode even at lengths roughly equal to the x and y periodic lengths[12]. Since,

at their closest, the separation between the real and higher order images charges is never

greater that the electrode separation, D, approximating the induced surface charge, qEL and

qER, as uniformly distributed is a reasonable approximation.

B. Validation

Initial validation of the model consists of a comparison with the more sophisticated, albeit

computational more intensive model of Reed et al[12, 13]. In short, the model of Reed et

al. allows for the polarization of the metallic electrode through variable Gaussian charge

distributions which are adjusted according to a variational procedure, accounting for the

constant potential condition of the electrodes. The key differences between the model of

Reed et al. and that proposed here is the way the electrode charges are adjusted and the

use of explicit image charges in the proposed model. Where Reed et al. meet the constant

potential condition by minimizing the total potential of the system by adjusting the atomic

charge of the electrode, the proposed model adjusts the electrode atomic charges according to

Equations 13. And while the model of Reed et al. intrinsically arrives at the electrode surface

charge distribution commensurate with that of an image charge, the proposed model uses

explicit image charges, updated according to the position of the corresponding electrolyte

charges, to mimic the nonuniform portion of the electrode surface charge distribution. The

details of the image charge scheme, treatment of long range electrostatics, and so forth are

discussed in detail in the Computation section.

Two validation systems have been created to investigate the accuracy of the proposed

model; System I is composed of two parallel electrodes separated by a distance D=52.9 Å.

The electrodes are composed of three layers of atoms (a total of 2700 atoms) arranged in

a fcc lattice with a lattice parameter of 3.92 Å. Each electrode is periodic in the x and

y dimensions such that x = 83.1 Å and y = 72.0 Å, with the (111) face exposed to the
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FIG. 3: Force experienced by the test charge in System I as a function of the position in the cell.

Propose method (lines), and the method of Reed et al. (symbols). V0 = 0.0V (solid line and

circles), V0 = 2.75V (dashed line and squares).

electrolyte. A single charge, qR = −e is located at (0, 0, z) in the space between the two

electrodes. System II is composed of two parallel electrodes separated by a distance D=85.0

Å. The electrodes are composed of three layers of atoms (a total of 294 atoms) arranged

in a fcc lattice with a lattice parameter of 3.66 Å. Each electrode is periodic in the x and

y dimensions such that x = 25.62 Å and y = 25.62 Å, with the (100) face exposed to the

electrolyte. A single charge, qR = −e is located at (0, 0, z) in the space between the two

electrodes.

Figure 3 shows the force experienced by the test charge in System I as it is moved from

one electrode to the other for V0 = 0.0V (solid line) and V0 = 2.75V dashed line. The circle

and squares are for the same system and conditions respectively, for the method of Reed

et al[12]. The proposed method reproduces the force for the cell at the non-zero potential.

The force for the zero applied potential case deviates slightly near the electrode surface.

The current method uses point charges to represent the electrode surface charge, where the

method of Reed et al. uses Gaussian charge distributions centered about the electrode atom
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FIG. 4: Energy of System I as a function of the test charge position within the cell. Propose

method (lines), and the method, of Reed et al. (symbols). Total energy (solid line and diamonds),

the energy due to V0 (dotted line and circles), and the energy from all images (dashed line and

squares).

centers. This may explain the difference at close separation. However, the force for the

non-zero applied potential should have the same shape as that for the zero applied potential

case, albeit shifted downward to more negative values of force. This is the case for the

proposed method, but it doesn’t appear to be so for the method of Reed et al. It is unclear

why this is.

Figure 4 gives components of the total energy for System I as the test charge is moved

across the cell. The dotted line shows that portion of the energy due to the constant potential

drop across the cell (Equation 11). Note the distance dependence, that is the constant slope

across the cell. This is the reason the shape of the V0 = 0.0V and V0 = 2.75V force curves

in Figure 3 are identical, albeit shifted by a constant force - that force simply being the

slope of the V0 line in Figure 4. The dashed line of Figure 4 is the component of the energy

due to the interaction of the test charge and all images, including the higher order images

induced by the primary images of the opposing electrodes. The solid line is the total energy
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FIG. 5: Electrode charges and interaction energy of System I due to the higher order image charges

as a function of test charge position. The surface charge on LE (squares), located at z = 0, and

charge on RE, located at z = D (circles), and the energy due to the interaction of the test charge

with this electrode surface charge (diamonds).

of the system. The symbols are for the method of Reed et al[12]. It can be seen that the

proposed method is in excellent quantitative agreement. Most noteworthy is the agreement

for the energy due to all images, primary and higher. This is significant because this includes

the energy from the higher order image charges that are calculated from Equations 13, and

further assumed to be uniformly distributed across the electrode surface (as discussed in

relation to Figure 2).

As discussed above, the net surface charge induced on an electrode from these higher

order image charges is a function of the position of the electrolyte charges in the cell.

Figure 5 shows the way the surface charge due to the higher order image charges varies

as the test charge is moved across the cell. By way of an example of the consequences of the

variable charge scheme , consider this cell when the test charge is located at z = 1
4
D. From

Equations 13 we see that qEL = 1
4
qR and qER = 3

4
qR. The total charge on LE, including the

primary image charge (qI = −qR), is then −3
4
qR, and the total charge on RE is −1

4
qR. Note

that the total charge of the cell remains neutral for any value of qR.
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FIG. 6: Representation of Marcus diabatic energy surfaces for two oxidation states.

With the details of the proposed method in place, we next focus on extracting electron

transfer rate information from the model using the framework of Marcus theory[16, 17]

C. Electron Transfer

The motivation for the following section is to identify the key values from the preceding

method which will allow the calculation of electrode-reactant distance dependent reaction

rates for use in a kinetic Monte Carlo (KMC) simulation scheme. Consider two energy sur-

faces representing the collective coordinates of solvent surrounding an ion with two possible

oxidation states, Figure 6. The rate of electron transfer,

ket = Ae(−∆G∗/kBT ), (14)

can be expressed[16, 17] in terms of the reorganization energy, λ, the free energy of reaction,

−∆G0, and the pre-exponential factor, A, such that,

∆G∗ =
(λ + ∆G0)2

4λ
, (15)
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and,

A =
2π

~
|J |2 1√

4πλkBT
. (16)

Assuming linear response of the solvent for the electron transfer reaction - that is, the curves

of Figure 6 are quadratic - the mean values of the reaction coordinate for the oxidation

and reduction reactions ,〈∆E1〉 and 〈∆E2〉 respectively, are related to the difference in the

minimas of the free energy for the reaction such that,

∆G0 =
1

2
(〈∆E1〉 + 〈∆E2〉), (17)

and the reorganization energy,

λ =
1

2
(〈∆E1〉 − 〈∆E2〉). (18)

The energy difference between the initial and final states of the reaction can be found

using the proposed method of the preceding section. The energy difference for the oxidation

reaction, δERed→Ox+e−, can be found by selecting some Red atom in a molecular dynamics

trajectory and calculating the system energy according to the proposed method. The Red

atom is then changed to the Ox species (with all nuclear coordinates remaining fixed), and

the system energy is again calculated according to the proposed method. The energy gap

coordinate, ∆E, is simply this energy difference combined with the ionization energy for the

ion and the work function of the metal electrode,

∆E1 = δERed→Ox+e− + I + W. (19)

Since the ionization energy and work functions are constants, 〈∆E1〉 can be found by av-

eraging δERed→Ox+e− over many nuclear configurations of a molecular dynamics trajectory.

Reed et al. have shown[13] that, on average, the energy difference for the redox species

is independent of the electrolyte and is simply the energy for creating the same charge in

an otherwise empty cell. This is easily rationalized considering that during the electron

transfer process the nuclear coordinates are not allowed to relax, and therefore screen the

newly created image charge. It is the image charge that is solely responsible for the average

energy difference.

Figure 7 shows the average energy of the oxidation/reduction of a single ion, M+
⇋

M2+ + e−, at V0 = 10.9V for System II described in the validation section. The lines are
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FIG. 7: ∆E for the reduction reaction (solid line, circles), and oxidation (dashed line, squares).

The data for the symbols are from Reed et al[13].

data calculated from the proposed method while the symbols are those of Reed et al[13].

Again, the two methods are in excellent agreement.
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