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1 Introduction

The development of methods for the exploration of reaction paths in con-
densed molecular systems (solutions and biopolymers) and the computation
of the corresponding reaction free energies and kinetic parameters remains
at the center of research in computational chemistry. Much has happened in
recent years. It is the subject of a good number of the chapters in this book,
which give an up to date overview of the enormous progress that has been
made. We mention the development of the transition path sampling method
by the group of Chandler at Berkeley (see the chapters by Dellago, Bolhuis
and Geissler, where also the references to the original literature can be found).
An alternative approach with a somewhat different purpose and scope is the
metadynamics method developed by the Parrinello group (see the chapter
by Laio and Parrinello). Transition path sampling and metadynamics studies
to date have focused mostly on dynamical processes which never leave the
adiabatic ground state potential energy surface (PES). However barriers for
chemical reactions often coincide with an avoided crossing, or, alternatively,
can be seen as the result of the coupling between two intersecting diabatic
surfaces (see Fig. 1). The diabatic perspective offers certain advantages. This
applies in particular to activation energies with a strong solvent contribution.
An instructive example of such a reaction is electron transfer (ET). For outer
sphere transfer the barrier is almost 100 percent due to rearrangement of the
solvent polarization. This observation is a key idea in the Marcus theory of
electron transfer [1–4]. In the original formulation of the theory [1] the polar-
ization was described by the linear response of a dielectric continuum. How to
quantify solvent polarization by a microscopic order parameter? Polarization
is a highly collective quantity with a configurational component (the orienta-
tion of molecules) and electronic component (induced polarization).

While it should be possible to find a ground state observable incorporating
all relevant aspects of the solvent response to ET, the diabatic picture at the
core of Marcus theory suggests that the vertical energy gap between the two

A ∆ ∆E’
E

EB

E

Fig. 1. Two intersecting diabatic potential energy surfaces EA and EB (solid
curves). The dashed curves are the corresponding adiabatic surfaces. The dashed
arrows indicate two examples of the diabatic vertical energy gap defined in (3), the
gap on the left (∆E) is positive and the one on the right (∆E′) negative
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diabatic surfaces is a more suitable quantity for this purpose (see e.g. [2]). The
first to use this idea in a simulation of ET reactions was Warshel [5]. A key
step in his approach is the observation that the energy gap is a particularly
convenient reaction coordinate for the application of free energy perturbation
methods [5–11]. This enabled Warshel and coworkers to calculate not only the
reaction and activation free energy from their molecular dynamics (MD) tra-
jectories but also the reorganization free energy of Marcus theory (see below).
The latter quantity, usually written as λ, is the free energy cost of deforming
an equilibrium atomic configuration in the reactant state to an equilibrium
configuration of the product state while staying on the diabatic PES of the
reactant (so without making an electronic transition). Reorganization free en-
ergy is therefore a new quantity unique to the diabatic (two surface) picture.
As the many successful applications of Marcus theory illustrate, it is a most
powerful concept for the analysis and understanding of chemical reactions.

Marcus theory has inspired a rich production of simulation studies aiming
to validate its assumptions or focusing on applications to specific model sys-
tems. References [6,7] and [12–27] are a selection of the many papers that have
appeared since Warshel’s pioneering 82 paper [5]. These studies are based on
classical and semi-classical models. In a series of recent ab initio MD studies of
redox half reactions involving transition metal coordination complexes [28–33]
and organic molecules [34–36] we have attempted to implement similar meth-
ods in a density functional theory based MD (Car-Parrinello) [37] framework.
A number of technical difficulties had (and some remain) to be resolved. The
aim of this chapter is to discuss some of the background which our approach
shares with earlier work.

2 Simulation of Electron Transfer

2.1 The Diabatic Energy Gap as Reaction Coordinate

For non-adiabatic ET treated in a semi-classical MD approximation the dia-
batic energy gap is the ideal reaction coordinate [5]. The electronic system in
this approach is modeled by a two level system defined by a 2×2 Hamiltonian
matrix

H =



EA

(
RN

)
γ
(
RN

)

γ
(
RN

)
EB

(
RN

)



 (1)

The two diagonal elements represent the diabatic PES of reactant A and
product B where RN are the atomic positions of (in principle) all N atoms
in the system. For example in case of a charge separation reaction

D + A → D+ + A− (2)

the reactant state A corresponds to the donor-acceptor pair D + A before the
transfer and B to the product D+ +A− after the transfer. The diabatic states
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are coupled by the off-diagonal matrix element γ. This quantity depends on
the overlap between the electron wavefunctions in reactant and product state
and is often modelled by an exponent of the distance rDA between donor
and acceptor, γ = γ0 exp(−αrDA), where α is a positive parameter with the
dimension of inverse length. The vertical diabatic energy gap of the two level
system of (1) is simply the difference of the diagonal matrix elements.

∆E(RN ) = EB(RN ) − EA(RN ) (3)

If the off-diagonal matrix element γ is small (weak coupling), for example
because the distance between donor and acceptor in reaction (2) is large, the
(absolute) diabatic energy gap ∆E of (3) can be identified with the adiabatic
vertical excitation energy

∆E1←0

(
RN

)
=
[
(EA − EB)2 + 4γ2

]1/2

(4)

where the index 0 denotes the ground state and 1 the (only) excited state
and we have suppressed the dependence on RN of the quantities on the rhs.
Note, however, that ∆E of (3) can be both positive and negative, changing
sign at the surface crossing. This is where, in the weak coupling limit, the
radiationless transition between state A and B takes place. The vertical dia-
batic energy gap can therefore be used as a reaction coordinate assigning each
atom configuration RN either to reactant or product. Using first order time
dependent perturbation theory arguments, Marcus separated the ET rate kET

in a quantum transition probability proportional to the squared coupling pa-
rameter γ2 and the Boltzmann exponent of the free energy G at the surface
crossing

kET = κγ2 exp [−∆G (∆E = 0) /kBT ] (5)

The non-adiabatic “transition state” is unambiguously identified by the zero
gap (∆E = 0). Equation (5), including the expression for the prefactor κ, can
be derived using the Golden rule. The derivation is far from straightforward,
requiring careful consideration of the classical limit of the atomic system (see
for example [38]). An easier route is to start from a classical atomic system
using a Landau Zener approach [39].

The factorization of the ET rate achieved in (5) allows us to compute the
activation free energy ∆G (∆E = 0) treating the atoms as classical particles
and make separate assumptions for the estimation of γ (or even not worry
about it at all). This is the justification of the many classical force field model
based simulations of non-adiabatic ET, which at first might seem somewhat
of a contradiction. The vertical energy gap in the fully classical point charge
model can be related to the electrostatic potentials at the site of the donor
and acceptor ions. For the purpose of comparison of our Car-Parrinello results
to classical model studies it is instructive to take a more detailed look at the
vertical gap in the simple point charge approximation. The total energy in
such a model can be written (in atomic units) as
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UA

(
RN

)
=

qDqA
rDA

+
solvent∑

i

(
qDqi

rDi
+

qAqi

rAi

)

+
solvent∑

i>j

qiqj

rij
+

N∑

i>j

vij (rij) (6)

where the charges and positions of the donor and acceptor ion are labeled
by the subscript D respectively A and i counts solvent particles. vij is some
atom-atom potential describing short range interactions between particles i
and j. Summation for this pair interaction term runs over all particles N in
the model (solutes plus solvent) where the donor particle D is now identified
with the particle with index i = 1 and the acceptor with the particle indicated
by index i = 2. If we assume that qD and qA are the charges of donor and
acceptor in the reactant state we can interpret the energy UA of (6) as the
total energy before the transfer, hence the subscript A. The charge of donor
and acceptor after the transfer will then be qD +1 respectively qA −1 and the
total energy UB of the product becomes

UB

(
RN

)
=

(qD + 1) (qA − 1)
rDA

+
solvent∑

i

(
qD + 1
rDi

+
qA − 1
rAi

)

qi

+
solvent∑

i>j

qiqj

rij
+

N∑

i>j

vij (rij) (7)

Subtracting gives the vertical energy gap.

∆U = UB − UA =
(qA − qD − 1)

rDA
+

solvent∑

i

(
1
rDi

− 1
rAi

)

qi (8)

= − 1
rDA

+
N∑

i�=1

qi

rDi
−

N∑

i�=2

qi

rAi
(9)

All short range interaction cancel since the position of the particles are kept
fixed during a vertical transfer. Recalling that the electrostatic potential at
the site of a particle i can be expressed as

Φi

(
RN

)
=

N∑

j �=i

qj

rij
(10)

we recognize in the last two terms of (9) the difference of the electrostatic
potentials acting on the donor (i = 1) and acceptor (i = 2) and we can write
the point charge gap as

∆U
(
RN

)
= − 1

rDA
+ ΦD

(
RN

)
− ΦA

(
RN

)
= − 1

rDA
+ IPD − EAA (11)

Equation (11) is indeed equal to the vertical electron transfer excitation energy
(4) in the classical point charge approximation (plus weak coupling limit). This
is made explicit in the second identity, where IPD is the ionization potential
of the donor and EAA the electron affinity of the acceptor. The first term is
the direct “particle-hole” Coulomb contribution to the excitation energy.
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2.2 Reaction Free Energies

The crucial step, as in any study of chemical reactivity based on reaction
coordinates, is the computation of the free energy profile or potential of mean
force (PMF). A formalism with separately defined potential energy surfaces
for reactant A (see Sect. 2.1) and product B also yields two separate diabatic
free energy profiles. So, to begin with the total free energy we define

AM =−kBT lnΛ−3N

∫
dRN exp[−βEM

(
RN

)
] (12)

where M = A,B. EA is the diabatic PES of state A, and EB the PES of
state B (3). Λ is the average thermal wavelength of the atoms defined as
Λ−3N =

∏
j λ

−3Nj

j /Nj ! with λj = h/
√

2πmjkBT the thermal wavelength of
the nuclear species j. As usual β−1 = kBT with kB the Boltzmann constant
and T the temperature. The reaction free energy change can then be related
to a ratio of partition functions

∆A = AB −AA = −kBT ln

∫
dRN exp(−β EB

(
RN

)
)

∫
dRN exp(−β EA (RN ))

(13)

Note that a definition of order parameters distinguishing between reactant
and product is not needed. Integration in (12) and (13) extends over the full
configuration space.

Next the free energy profile. Unlike the total free energy (12), this quan-
tity is not unique. It does depend on the specification of an order parameter
X
(
RN

)
. This can be a geometric characteristic such as bond length or angle,

or, what we are going to use in the end, the vertical energy gap ∆E
(
RN

)
.

The definition of the diabatic free energy profiles AM (x),M = A,B is similar
to (12) but now the integral is restricted to atomic configurations having a
given value x of the function X

(
RN

)
. The restriction is formally imposed by

inserting a Dirac delta function.

AM (x) = −kBT lnΛ−3N

∫
dRN exp[−βEM

(
RN

)
]δ(X

(
RN

)
− x) (14)

The probability distribution for x can be defined by a similar integral normal-
izing by the full unrestricted partition function

pM (x) =

∫
dRN exp[−βEM

(
RN

)
]δ(X(RN ) − x)

∫
dRN exp[−βEM

(
RN

)
]

= 〈δ (X − x)〉M (15)

In the second identity the probability distribution is formally written as an
expectation value of a Dirac delta function (recall the difference in status of
X and x in our notation, X is a function of configuration RN , which has been
suppressed here, while x is a constant). Comparing (14) and (15) we see that
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Fig. 2. Two intersecting diabatic free energy surfaces AA and AB (thick solid
curves). Thin solid arrows represent the reorganization free energies λA and λB

as defined in (17) and (18). Also indicated is the reaction free energy change ∆Ax of
(19). Note the important difference with Fig. 1 which shows potential energy curves
EM and vertical energy gaps ∆E. The aim of the theory in this review (Marcus
theory) is to establish a relation between energy gaps and free energies

AM (x) = −kBT ln pM (x) + AM (16)

where AM is the diabatic free energy of (12). The free energy profiles (14)
are the basis for the definition of reorganization and activation free energies,
using (16) for their computation. These free energies are differences relative
to the values of the stable minimum of AM (x) in the reactant and product
state. We will indicate the location of these minima by xA and xB (see Fig. 2).
Reorganization free energies are then defined as

λA = AA (xB) −AA (xA) (17)
λB = AB (xA) −AB (xB) (18)

While reorganization free energies for reactant and product state are in
general different, λA = λB in Marcus theory (see Sect. 2.4). We should also be
careful to distinguish between the reaction free energy change as determined
from the stable values of AM (x) (see Fig. 2)

∆Ax = AB (xB) −AA (xA) (19)

and the reaction free energy ∆A of (13). ∆Ax of (19) is, in principle, dependent
on the choice of reaction coordinate, which is why we have appended the
subscript x, while ∆A of (13) is not. Finally the free energy of activation for
the forward (M = A) and reverse (M = B) reaction can be defined as

∆A†
M = AM

(
x†)−AM (xM) (20)

where x† is the value of the reaction coordinate where the diabatic curves
intersect.
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2.3 Free Energy Perturbation Method

The gap is a difference of total energies. The free energy required to change
the gap can therefore be obtained using free energy perturbation methods
developed in classical force field based simulation to calculate the free energy
cost of a modification of the Hamiltonian (see [40, 41] and the text book
of Frenkel and Smit [42]). This special feature of the gap has a number of
consequences, both from the point of view of computational method [5, 7]
and interpretation [10]. We start by noting that the expression (13) can be
rewritten as an average over the exponential of the vertical energy gap ∆E
of (3). The result has the form of a free energy perturbation (FEP) expression
[40–42]

∆A = − 1
β

ln〈e−β∆E〉A (21)

=
1
β

ln〈eβ∆E〉B (22)

where 〈· · · 〉M denotes the canonical average over the PES of state M = A,B.
As profound as this expression is, it is also impossible to use in practical
calculations, except in very special cases. The reason is that for most systems
of interest there is no overlap between regions in configuration space accessible
by thermal fluctuations of the equilibrium reactant and product. So, taking
(21) as example, the configurations visited by a trajectory in state A will give
large positive values for ∆E and therefore a vanishing exponential weight (see
Fig. 1). On the other hand ∆E is negative for equilibrium configurations of
state B resulting in a huge exponent. Unfortunately the dynamics controlled
by EA never reaches this part of configuration space. A sure signature of these
sampling problems is a discrepancy between the averages of (21) and (22).

The reader should be familiar with the problem. It is the central problem
in free energy computation which every method is trying to solve. The method
favored by Warshel in his ET calculations (for a review see [7]) is umbrella
sampling (US) using as biasing potential a linear superposition of the two
diabatic PES:

Eη

(
RN

)
= ηEB

(
RN

)
+ (1 − η)EA

(
RN

)
(23)

Varying the value of the coefficient η from 0 to 1 creates a series of potentials
gradually transforming EA into EB. The discrete increments ∆η must be
chosen sufficiently small for the exponential sampling to be accurate so we
can use (21) to estimate the corresponding increase in free energy

A (η + ∆η) −A (η) = −kBT ln〈exp [−β (Eη+∆η − Eη)]〉η (24)

where A (η) = −kBT lnΛ−3N
∫

dRN exp(−βEη) is the free energy generated
by the surface Eη (conf. (12)) and the subscripted brackets denote a ther-
mal average over this surface. The reaction free energy ∆A is obtained by



490 J. Blumberger and M. Sprik

adding all intermediate free energy changes. Alternatively we can exploit the
linear dependence on η which goes back to the coupling parameter method of
Kirkwood [43] and use thermodynamic integration

∆A = A(1) −A(0) =
∫ 1

0

dη
dA(η)

dη
=
∫ 1

0

dη 〈∆E〉η (25)

Similar to (24) 〈∆E〉η is computed for a discrete set of values of η (windows)
between 0 and 1 and the integral is approximated by a finite sum.

The extension of the FEP/US scheme for the computation of the order
parameter probability function pM (x) (15) is an example of the histogram
method. pM (x) can be obtained in “principle” by determining a histogram
of order parameter fluctuations in state M . However, what we are interested
in, is the value of pM (x) at the crossing of the diabatic free energy surfaces
AA(x) and AB(x) because that is where the reaction (electron transfer) takes
place. This will give us our estimate of the activation free energy (see Fig. 2
and below). But, of course, we encounter the same problem as for reaction
free energy change calculation, this region will be out of reach of equilibrium
fluctuations and is sampled very poorly, if at all. This is no different from the
adiabatic picture. However, the diabatic picture (an approximation justified
in the weak coupling limit) allows for a neat formulation of this problem.
Following a derivation similar to the one which led to (21), we can relate
the order parameter probability distributions of one diabatic state to the
distribution of the other.

pB (x)
pA (x)

= eβ∆A 〈e−β∆Eδ (X − x)〉A
〈δ (X − x)〉A

(26)

As in (21) we have to include exponents of the vertical gap as weights in the
averaging. This seriously deteriorates the accuracy except when the energy
differences are small, such as is the case in the crossing region where the
weights are approximately unity (∆E ≈ 0). So the idea is again to bridge
distributions pA and pB by a series of overlapping distributions (umbrellas)
generated by the bias potential (23). The fluctuations of X

(
RN

)
for the

MD trajectories for a representative set of discrete values of η are binned in
histograms. These histograms are merged into a single diabatic probability
distribution pA(x) which now extends all the way to values of x where pB(x)
has its maximum (see for example [44] and the Frenkel & Smit textbook [42]).

Equation (26) also shows why the vertical energy gap ∆E is different from
other reaction coordinates. Taking logarithms and substituting (16) we find

AB(x) −AA(x) = −kBT ln
[
〈e−β∆Eδ (X − x)〉A

〈δ (X − x)〉A

]

(27)

Setting ∆E = X we see that ∆E appears both in the argument of the delta
function on the rhs and the exponent. As a result the exponent can be taken
outside the configurational integral giving
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AB(ε) −AA(ε) = ε (28)

where ε stands for a given value of the gap ∆E. This relation, commonly
referred to as the Zwanzig relation, states that the logarithm of the probability
distributions of the diabatic states are linearly dependent. The free energy
curve of the product can be obtained adding ε to the free energy curve for
the reactant. This equation, which is rigorous and completely general has a
number of interesting and useful implications for computations which use the
energy gap as reaction coordinate. For example, substituting in (17) and (18)
with X = ∆E we find for the reorganization energies

λA = +∆Aε − εB (29)
λB = −∆Aε + εA (30)

where ∆Aε is the reaction free energy change as determined from the minima
in the AM (ε) curves at εA and εB (see (19)). Equations (29) and (30) tell us
that, once we have an estimate of the reaction free energy change, we can
find the reorganization free energies simply from the equilibrium values of
the diabatic gap, which for all practical purposes can be equated with the
average gap in the reactant and product state. This is particularly helpful
when the reaction free energy change vanishes (∆Aε = 0), as for example for
self exchange reactions. Note also that, since reorganization free energies are
by definition positive, (29) and (30) imply that

εB < ∆Aε < εA (31)

The equilibrium energy gaps set a lower and upper bound to the reaction
free energy change. Finally, since in the diabatic approximation the transfer
is assumed to take place at the curve crossing (ε† = 0), the activation free
energy (20) becomes directly equal to the free energy cost of closing the energy
gap,

∆A†
M = AM (ε = 0) −AM (εM ) (32)

2.4 Relation to Marcus Theory

We are now ready to return to Marcus theory, which was at the origin of
all this formalism. Marcus assumed that the solvent responds linearly to a
change in charge, which is equivalent to approximating distribution (15) for
the energy gap by a Gaussian

pM (ε) =
1√

2πσM

exp
[
−(ε− εM )2/(2σ2

M )
]
, (33)

where M = A,B. Since we are dealing with Gaussians

εM = 〈∆E〉M (34)
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Similarly the squared widths σ2
M in (33) are equal to the variance of the gap

fluctuations
σ2

M =
〈
(∆E − 〈∆E〉M )2

〉

M
(35)

The corresponding free energy profiles (16) are parabolic

AM (ε) = Aε
M +

kBT

2σ2
M

(ε− εM )2 (36)

As pointed out in Sect. 2.2 the minimum free energy Aε
M and the total free

energy of AM of (12) are not the same. For Gaussian distributions it is easy
to find what is missing

Aε
M = AM +

kBT

2
ln
[
2πσ2

M

]
(37)

Now comes the step where we use (28) which is special to energy gaps. Ac-
cording to this equation, free energy functions for vertical gaps can differ only
by a linear term. This means that quadratic terms must cancel which can only
be satisfied if the variance of the fluctuations is independent of the chemical
state of the system

σ2
A = σ2

B ≡ 2kBTλ
′ (38)

The second identity defines the linear response reorganization free energy λ′.
Equation (38) may at first seem a rather strong claim, in particular for half
reactions, but is, according to (28), a rigorous consequence of the Gaussian
approximation. Any violation of this relation must be due to non-linearities
as was pointed out by Tachiya in [45]. Similarly, λ′ in (38) is in general not
identical to the reorganization free energies of (29) and (30) (which is why we
have added the prime). This is another point emphasized by Tachiya [39]. For
Gaussian distributions, however, these quantities are indeed the same. This
follows from the constraints imposed by (28) on the linear coefficients in (36)
which require

λ′ =
1
2

(εA − εB) (39)

Substituting with (36) in expression (29) for λA we obtain

λA =
1

4λ′ (εA − εB)2 = λ′ ≡ λ (40)

The same result is found for λB of (30). For parabolic free energy curves of
energy gaps we can therefore forget about the various kinds of reorganization
energy, there is only one, which we call λ. Similarly, because of (38) and (37) we
can conclude that in the Gaussian approximation the discrepancy between the
reaction free energies of ∆A (13) and ∆Aε of (19) vanishes. Rearrangement
of (29) and (30) then yields two very useful relations between equilibrium
Gaussian energy gaps and the reaction and reorganization free energies
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∆A =
1
2

(εA + εB) (41)

λ =
1
2

(εA − εB) (42)

Note that (41) can be directly obtained from the two point approximation
to the coupling parameter integral (25). Yet another route to (41) and (42)
departs from the cumulant expansion of (21) and (22) (see e.g. [31]).

∆A = 〈∆E〉A − 1
2kBT

σ2
A = 〈∆E〉B +

1
2kBT

σ2
B , (43)

For Gaussian statistics truncation after the second term is exact. Inserting
(34) and (38), we can recover (41) by adding and (42) by subtracting. Equa-
tions (43) and (38) are the ultimate of economy in free energy computation.
While (41) and (42) require two equilibrium runs (one for reactant and one
for the product), (43) and (38) claim that both ∆A and λ can be obtained
from the mean and variance of the gap fluctuations of a single trajectory, ei-
ther reactant or product state. The trajectory must of course be of sufficient
length to converge the variance σ2

M . This quantity has been eliminated in (41)
and (42) which is a significant advantage in ab initio MD calculations, where
runs are short. Finally, substitution in (32) yields the famous Marcus gap law
for the activation energy (written here for the forward reaction)

∆A†
A =

(λ + ∆A)2

4λ
(44)

3 Redox Half Reactions

3.1 Ab Initio MD Considerations

Equations (29), (30) and (32), or their Gaussian (Marcus) approximations of
Sect. 2.4, have been the basis for much of the simulation work on electron
transfer, using either semiclassical methods or fully classical point charge
models. However, the use of the vertical diabatic energy gap as a reaction
coordinate is not restricted to ET in the weak coupling limit even though for
systems with strong off-diagonal interactions (1) the diabatic energy surfaces
are not acceptable approximations to the adiabatic PES. The discrepancies,
particularly in the crossing region, are too large. However, while ∆E can no
longer be interpreted as the vertical (optical) ET excitation energy (4), it re-
tains its usefulness as an order parameter for ET. Moreover, the diabatic PES
can be used as a reference potential. The deviation from the true adiabatic
ground state energy surface can be accounted for by means of FEP techniques
similar to the methods discussed in Sect. 2.3. The adiabatic ground state en-
ergy can be obtained from diagonalization of the diabatic Hamiltonian matrix
((1) in case of a two level model) or from a completely independent calculation
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using ab initio electronic structure methods such as MP2 or DFT [8, 9]. The
question then is how to define the diabatic PES. Warshel and coworkers opt
for an empirical valence bond (EVB) scheme. In a series of papers they have
applied this approach, not only to ET [5–7] but also to proton transfer and
enzymatic reactions [8–11].

How to implement the diabatic energy gap approach in a DFT based ab ini-
tio MD (“Car-Parrinello”) simulation of a condensed molecular system, when
there is no EVB model available? In the case of ET it should be in principle
feasible to reconstruct the diabatic surfaces from the adiabatic electron trans-
fer excitation energies. Unfortunately DFT, at the level it is usually applied
in ab initio MD simulation, is notoriously unreliable for treating charge trans-
fers. The way we have avoided this problem in our work on redox reactions is
to separate full redox reactions (2) in half reactions.

R → O + e− (45)

Model systems now consist only of a single redox active solute rather than
two. Instead the number of electrons in the system can vary between n, say,
for the reduced state R and n − 1 for the oxidized state O. Implementation
in a Car-Parrinello simulation is fairly straightforward. The method normally
produces a finite temperature trajectory on the adiabatic ground state PES
of R or O. What our scheme in essence does is adding a second calculation
recomputing for the same ionic configuration the ground state energy of the
system with one electron less, (O) or one electron more (R), which gives the
vertical energy gap at that configuration.

The non-adiabatic picture as expressed in (5) is thus taken to the extreme
in our half reaction scheme. The coupling parameter γ is not only small,
it is zero, as it would be the case for very large separations between donor
and acceptor. This is in fact the proper limit for the reaction free energy
∆A if we want to compare the result of our calculations to experimental
standard redox potentials which formally correspond to reaction free energies
at infinite dilution. This is the main objective of our approach. However,
also the activation and reorganization free energies remain meaningful, if not
quantitatively, then at least qualitatively as a way to understand the redox
reaction kinetics.

There is, however, a serious objection that comes immediately to mind.
The interpretation of the vertical gap ∆E or free energy ∆A as the corre-
sponding quantities in a homogeneous solution clearly cannot be correct in
model systems under periodic boundary conditions as used in our simulation.
Either the R or O state, or both, end up with a net charge. In the Ewald sum-
mation methods used in our codes, net charge of the model is automatically
compensated by a homogeneous back ground charge, effectively playing the
role of a counter ion. Energies of half reactions have therefore no experimental
meaning. Still, free energies of full reactions, obtained as differences of half
reactions, can be compared to experiment, but only if charges of reactant and
product species are the same. Under these (rather restrictive) conditions long
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range interactions cancel (see Sect. 4.1). System size effects are not the subject
of this contribution which focuses on the statistical mechanics. The practical
justification we can offer here is the success of our scheme in reproducing a
(limited) number of experimental redox potentials for full reactions of model
aqueous transition metal coordination complexes and organic molecules (see
further Sect. 4.1).

3.2 Parallel to Electrode Reactions

There is a second way to view the half reaction scheme. In electrochemistry a
half reaction (45) is regarded as a zero order approximation to heterogeneous
electron transfer between an ion in solution and a metal electrode E (see for
example [46]). In the notation used in previous sections where reactant and
product state were indicated by A respectively B, we now have A = R + E
representing the state with the electron held by the reduced ion and B = O
+ E− the state with the active electron transferred to the electrode E. This
is a very useful parallel. It suggests that the thermodynamic driving force in
the simulation can be controlled similar to the way electrochemists control
a redox reaction by applying a voltage to the electrodes of the cell. In the
minimal implementation of this scheme we have employed in our simulations,
the electrode is replaced by a fictitious electron reservoir at electronic chemical
potential µ, which exchanges electrons with the solution but has no further
interactions with the solution. The PESs A and B remain the same in this
approximation except that we must add a shift µ to the PES of B

EA

(
RN

)
= ER

(
RN

)
(46)

EB

(
RN

)
= EO

(
RN

)
+ µ (47)

The vertical energy gap (3) for the transfer to the fictitious electrode is offset
by the same bias µ. We formally write for this electrochemically controlled
gap

∆Eµ

(
RN

)
= EB

(
RN

)
− EA

(
RN

)
= ∆E

(
RN

)
+ µ (48)

where ∆E is the ET energy of (3). The same linear relation holds for the free
energy of oxidation

∆Aµ = AB −AA = ∆A + µ (49)

where ∆A is the free energy difference (13). This will be the interpretation of
(45) we adopt in the remainder of the discussion. All equations of Sects. 2.2,
2.3 and 2.4 can be carried over if we make the following simple replacements

A → R B → O

∆E → ∆Eµ ∆A → ∆Aµ

(50)

In practice the electrochemical potential µ plays the role of an external pa-
rameter used to align the free energy profiles of reactant and product state.
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Indeed by choosing µ = −∆A the effective reactive energy change ∆Aµ (49)
can be made to vanish. ∆A can be estimated using the FEP methods outlined
in this chapter or alternatively, we can use the “numerical titration scheme”
proposed in [34] and applied in [28] and [31]. The freedom of the control over
µ is directly exploited in this scheme by stepwise variation of µ until the ox-
idation reaction is observed (for a critical evaluation of this approach and a
comparison to the FEP method see [31]).

4 Applications

4.1 Overview

The methodology outlined in the previous sections has been applied to a num-
ber of redox active solutes. The redox reactions we have investigated and the
result for the reaction free energy change are listed in Table 1 together with the
experimental values of the reaction free enthalpy. The density functional in all
calculations was BLYP. The simulation for the aqueous transition metal co-
ordination complexes (reactions 1 and 2) were carried using the CPMD pack-
age [47]. Standard norm conserving pseudo potentials (Trouillier-Martins [48])
were used and conventional plane wave cutoffs (70− 80Ry). Technical details
can be found in the original publications given in Table 1. For the molecular
systems (reactions 3 and 4) we employed a new mixed Gaussian-plane wave ab
initio MD method [49] and the Quickstep code [50]. The one electron orbitals
are expanded in Gaussian basis sets. Core electrons are represented using sep-
arable norm conserving pseudo potentials according to the Goedecker-Hutter
recipe [51]. The plane waves are used as an auxiliary basis set to describe the
density [49] which enables us to compute the long range electrostatic energies
using fast Fourier transform methods similar to CPMD.

Table 1. Reaction free energies in units of eV of four model redox reactions com-
pared to experiment. The first two reactions involve transition metal aqua ions. TH
(thianthrene) and TTF (tetrathiafulvalene) are two organosulfur compounds which
can be oxidized to stable radical cations. BQ (benzoquinone) and DQ (duroquinone)
are small quinones forming radical anions. The last column gives the reference to
the original papers

Redox Reaction Solvent ∆A(calc.) ∆G(exp.) Ref.

(1) Cu1+ + Ag2+ → Cu2+ + Ag1+ water −1.7 −1.83 28

(2) RuO2−
4 + MnO1−

4 → RuO1−
4 + MnO2−

4 water −0.3 +0.03 31

(3) TH•+ + TTF → TH + TTF•+ acetonitrile −0.9 −0.93 35

(4) DQ•− + BQ → DQ + BQ•− methanol −0.43 −0.46 36
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The redox free energies ∆A of reactions 2, 3 and 4 were estimated from
the average vertical energy gaps using the Marcus approximation ((41) for
reactions 2 and 3 and (43) for reaction 4). ∆A of reaction 1 was obtained
using the scheme of [34]. This method for the determination of redox potentials
does not have to rely on the Gaussian approximation and can be applied to
systems outside the Marcus regime. The Ag ion [33] and most likely also the
Cu aqua ion are examples of such non-Marcus ions (see further Sect. 4.2).

The agreement with experiment is good. Discrepancies are in the 100 meV
range except for reaction 2, where the error is 300 meV. The simulation para-
meters most critical to the assessment of the accuracy of these results are the
duration of the MD runs and the model system size. The typical run length is
10 ps (some runs are shorter, 5 ps, others longer, 20 ps). The number of sol-
vent molecules is between 30 and 50, with cubic box dimensions in the order
of 10-15 Å. All model systems contain only a single redox active ion without
counterion. In systems of such small dimensions the interaction with periodic
images and the Ewald back ground charge distribution is very large (in the
eV’s). There are a number of considerations why these large size effects are
apparently not affecting the accuracy of the redox free energies in Table 1 to
the same extent. Most important is a compensation of errors. The reactions
in Table 1 are all of the type

Xm + Ym+1 → Xm+1 + Ym (51)

The species in reactant and product have the same charges and approximately
the same spatial dimension. From a distance they will look rather similar to
the solvent and the long range errors cancel.

4.2 Two Examples: The Ru and Ag Aqua Cations

As an illustration of the methods presented in this chapter, and to underline
the importance of vertical energy gaps, we will discuss two half reactions
in more detail. Both involve transition metal aqua cations. The first is the
Ag1+ → Ag2+ + e− oxidation, i.e. half of the reaction 1 of Table 1. The
second is Ru2+ → Ru3+ + e−. The reason that this reaction is not included
in Table 1 is that we have not yet studied another metal ion with reduced
and oxidized states of the same charge so as to satisfy (51). The subject of
the discussion in this section is however not the redox free energy itself but
the statistical mechanics of the vertical energy gap. We have used therefore
the freedom of the control of the redox free energy (49), by choosing a value
of µ such that ∆Aµ = 0. This effectively aligns the free energy minima of
the diabatic surfaces in Fig. 2. These values of µ, which are different for each
reaction, are given in the caption of Fig. 3 (recall again that similar to ∆A of
half reactions, values of µ have no direct experimental meaning).

The probability distributions (15) of the (shifted) vertical energy gap of
(48) are shown in Fig. 3. These distributions have been determined by sam-
pling the time evolution of the vertical gap ∆Eµ in equilibrium runs of reduced
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Fig. 3. Vertical energy gap probability distributions pM (15) as determined from
equilibrium trajectories for two oxidation states of the Ru and Ag aqua-cations.
Dashed and dotted lines are the original histograms, solid curves are Gaussian fits.
The oxidation free energy ∆A has been set to zero by choosing the appropriate
value for the chemical potential, µ = 0.58 eV for Ru2+/Ru3+ and µ = −1.16 eV for
Ag1+/Ag2+. Note the asymmetry for the Ag system (see also Table 2)

and oxidized state. We immediately notice a difference. The distributions for
Ru are to a very good approximation Gaussian. The distribution for reduced
state (pR) and oxidized state (pO) are placed in symmetrical position relative
to ∆Eµ = 0 and have the same variance (see Table 2). This is in agreement
with (38) and (41), which requires that εO = −εR for ∆A = 0 (converting the
notation according to (50)). As explained in Sect. 2.4 this symmetry is a nec-
essary condition a Gaussian system must fulfill. Indeed the ET chemistry of

Table 2. Properties characterizing the diabatic free energy profiles AM shown in
Fig. 4 for the Ru2+/Ru3+ couple and Fig. 5 for Ag1+/Ag2+. The parameter εM gives
the location of the position of the minimum of the parabolic fit to AM and λM the
reorganization free energy computed from these fits according to (17) and (18). ∆A†

is the activation free energy determined from the intersection point of the parabolic
curves. The order parameter is the quantum energy gap of (48) except for the data
marked as Ru2+/Ru3+(cl.) which refer to the classical point charge gap of (53). The
widths σM are the root mean square second moments (35) of the corresponding gap
fluctuations used in the criterion of (38) to decide whether Marcus theory applies.
All energies are in eV. Data are taken from [32] and [33]

εR εO σR σO λR λO ∆A† Fig.

Ru2+/Ru3+ 0.78 -0.78 0.23 0.23 0.78 0.78 0.20 4A

Ru2+/Ru3+(cl.) 1.00 -0.82 0.39 0.33 0.24 0.42 0.08 4B

Ag1+/Ag2+ 1.17 -1.20 0.14 0.30 1.19 1.15 0.3 5
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Fig. 4. A: Free energy profiles for Ru2+ and Ru3+ corresponding to the probability
distributions of Fig. 3 using the shifted vertical energy gap of (48) as order parame-
ter. The low energy set of points have been obtained according to (16). The upper
parts have been obtained from the lower parts by adding or subtracting the energy
gap using (28). Dashed curves are parabolic fits. Panel B shows the free energy pro-
files obtained using the fluctuations of the classical point charge gap of (53) (data
taken from [32])

Ru cations is a text book example of an outer sphere process to which Marcus
theory applies. Ru(II) forms an octahedral coordination complex with water,
Ru(II)(H2O)6, which is, apart from a small contraction of the metal oxygen
distance, virtually preserved in oxidation state III (radial distribution func-
tions and other geometry data can be found in [32]). In contrast Ag1+/Ag2+

shows a significant asymmetry. This is consistent with the substantial changes
in the hydration structure induced by oxidation. As we found in [28] the coor-
dination number of Ag1+ is on average 4 (fluctuations are however large) while
the coordination number of Ag2+ is 5 (see also [29] and [33]). This coordina-
tion change increases the importance of non-linear effects which would violate
the assumptions for the validity of the Gaussian approximation (Sect. 2.4).

The free energy profiles corresponding to the distributions of Fig. 3 are
shown in Fig. 4 (upper panel) for Ru2+/Ru3+ and for Ag1+/Ag2+ in Fig. 5.



500 J. Blumberger and M. Sprik

-2 -1 0 1

∆Eµ(eV)

0

0.5

1

1.5

2

A
 (

ev
)

Ag
2+

Ag
1+

Fig. 5. Free energy profiles for Ag1+ (× symbols) and Ag2+ (+ symbols) corre-
sponding to the probability distributions of Fig. 3. The low energy set of points
have been obtained according to (16). The upper parts have been obtained from the
lower parts using (28). The solid and dashed curves are parabolic fits (data taken
from [33])

The curve for each oxidation state consists of two sets of data points connected
by a parabolic fit (thin lines). The data points have been obtained as follows.
The lower energy part of AR(ε) has been computed from pR(ε) by taking
the logarithm according to (16) and setting the constant AR to zero. The
low energy part of AO(ε) has been computed applying the same procedure to
pO(ε). In contrast the high energy part of AR(ε) (at negative gap values) has
been obtained from the equilibrium trajectory of the O state. Using (28) we
have simply subtracted the value of the vertical gap from AO(ε). The part of
AO(ε) at positive gap values was generated from AR(ε) in a similar way.

As expected the free energy profiles of Ru2+/Ru3+ form a mirror pair of
intersecting diabatic curves. The positions of the minima as obtained from the
parabolic fits are listed in Table 2 (first row) which also gives the estimates of
the reorganization free energies λM computed from the parabolic fits according
to (17) and (18) as well as the activation free energy using (32). These results
are in excellent agreement with the predictions of the Marcus model ((41),
(42) and (44)). However, even for Ag1+/Ag2+, despite of the asymmetries
(Fig. 3) parabolic fit functions approximate the simulation data reasonably
well. Deviations are largest in the equilibrium region of Ag+.

We emphasize again that (28) used for the construction of the nonequi-
librium parts of the curves is valid for every system, Gaussian or not. For Ag
we have verified this relation, the most fundamental of gap laws, by compar-
ing to the full diabatic free energy profiles computed using the FEP umbrella
sampling method outlined in Sect. 2.3. Three intermediate windows were gen-
erated by selecting three values for the coupling parameter η in the bias po-
tential of (23). The values we used were η = 0.25, 0.5, and 0.75 bridging the
gap between the terminal η = 0 and η = 1 windows given by the equilibrium
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results of Fig. 3. The results are reported in [33]. The FEP/US AM (ε) profiles
closely follow the parabolic fits in Fig. 5. The largest deviations are observed
for gap values in the interval ∆Eµ = 0.5−1 eV. This is the region where most
of the coordination number fluctuations are found to occur, confirming that
they might be responsible for the non-linear behaviour [33].

The results for Ru2+/Ru3+ and Ag1+/Ag2+ confirm that the diabatic
energy gap can be used as reaction coordinate for redox reactions, both in the
Marcus regime and outside. Are there alternatives? The question is of interest
because total energy gaps come with a number of technical complications for
ab initio MD applications. One of the difficulties discussed in Sect. 3 is the
computation of excited electronic states. Another drawback is that energy
gaps prohibit the use of constraint methods. In this still rather popular method
the free energy profiles are obtained as integrals over the mean force acting
on the reaction coordinate (hence the name potential of mean force) [52].
The reaction coordinate is fixed at a series of values and the mean force is
estimated from the force of constraint. So in the notation of Sect. 2.2

A(x) −A(x0) =
∫ x

x0

dx′
〈
∂H

∂X

〉

X=x′
= −

∫ x

x0

dx′λX(x′) (52)

where λX(x′) is the time average of the Lagrange parameter keeping the value
of X

(
RN

)
fixed at x′ during the MD run (the last identity is approximate, for

the corrections see [52]). This approach in practice requires that the reaction
coordinate is available as an explicit function of configuration. Total energy
is an implicit function so cannot be subjected to mechanical constraints.

Constraint methods, if applicable, are easy to use in ab initio MD which
motivated us to search for configurational reaction coordinates to describe the
Ru2+/Ru3+ and Ag1+/Ag2+ half reactions, preferably a structural (geomet-
ric) parameter. The coordination change we observed for Ag1+/Ag2+ suggests
that coordination number (nc) might be used for this purpose in this system,
which is what we tried in the work reported in [29]. The PMF we obtained
is reproduced in Fig. 6. The contrast with Fig. 5 is striking. While there is a
maximum in the PMF around nc = 4.6, its value is one order of magnitude
smaller than the activation free energy at the curve crossing in Fig. 5 (see
also Table 2). The apparent barrier in Fig. 6 of 17 mev (=195 K) is well in
the thermal range, implying that spontaneous oxidation might occur on the
MD time scale. The reason that these events are not observed is that nc is
evidently inadequate as a reaction coordinate (in fact as the analysis in [33]
shows nc is not even a good order parameter for distinguishing unambiguously
between oxidation states). The transition dynamics is dominated by solvent
rearrangements which are not represented by the PMF for nc. The conse-
quence is underestimation of the free energy of activation. This phenomenon
is now well understood thanks of the work of the Chandler group (see for
example [53, 54] and the chapter on transition path sampling in this book).
The special point for us here is that the solvent reorganization is much bet-
ter accounted for by the free energy of the diabatic energy gap. This feature
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of diabatic energy gaps has been repeatedly emphasized by Warshel (see in
particular [8, 10,11]).

The discussion above raises the question whether perhaps the classical elec-
trostatic point charge energy gap (11), while a (probably poor) approximation
to the full electronic energy gap, could non the less play a similar role as re-
action coordinate capturing the solvent reorganization. The idea would be to
simply assign SPC charges to the H and O atoms of the solvent and compute
the electrostatic potential at the site of the ion by standard Ewald methods.
What is gained is that the mean force for this quantity can be determined
using mechanical constraint methods or included among the metadynamics
variables. The vertical SPC gap ∆U for half reactions is given directly by the
electrostatic potential (10). The derivation is similar to the one given for the
ET gap in Sect. 2. As we already have established that the Ru+2 → Ru3++e−

reaction adheres closely to the Marcus rules, this system seems a good can-
didate to subject this idea to a test. For the purpose of comparison to the
fully consistent DFT results of Fig. 4 it is convenient to “calibrate”∆U by
the ionization energy in vacuum, denoted by ∆Ev

0 , leading to the following
expression for the classical vertical gap

∆Uµ(RN ) = Φ(RN ) +
ξEW

2L
(q2

O − q2
R) + ∆Ev

0 + µ (53)

We have also included the self interaction energy of the ion with its periodic
images and background charge in a finite periodic cell [55]. The Ewald constant
ξEW = −2.837297 and L is the box length. qM is the classical point charge
of the ion in state M . Finally, to be consistent with the bias applied to the
quantum gap ∆Eµ (see (48)) we have also offset ∆U by an adjusted electronic
chemical potential µ ensuring that reduced and oxidized state are strictly
thermodynamically equivalent (∆Aµ = 0).

The PMF for the SPC gap of Ru2+/Ru3+ is compared to the full quantum
gap free energy profile in Fig. 4. Only the lower energy (adiabatic) part has
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Fig. 6. Potential of mean force for the oxygen coordination number nc of the Ag
aqua cation. nc = 4 for Ag1+ and nc = 5 for Ag2+. Oxidation takes place at nc = 4.6
(data taken from [29]). Note the difference in energy scale with Fig. 5
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been computed. It is clear, however, that the free energy profiles along the
SPC gap are again harmonic but the curvature of the Ru3+ curve is almost
twice larger than for Ru2+. The same factor two difference is found for the
variance of the equilibrium fluctuations (Table 2). In contrast to the quantum
gap, the Marcus condition (38) is not satisfied for the classical gap. There is no
conflict because (38) is only valid for the true energy gap of a Gaussian system.
However, consistent with the larger width, also the activation free energy of
∆A†

c = 0.08 eV predicted by the maximum in the PMF of the classical gap
is lower than the estimate ∆A†

q = 0.20 eV obtained for the quantum gap.
Because the Ru cation is such a well behaved Marcus ion and ∆Eµ rather
than ∆Uµ satisfies all the Marcus rules, we can be confident that ∆A†

q is
the more reliable number. The classical electrostatic potential generated by
fixed charges on the solvent atoms can be assumed to account for most of the
reorganization of the orientational (inertial) solvent polarization. This can
be concluded from all the work on classical models of aqueous Fe2+/Fe3+

charge transfer, which showed that when ∆U is the consistent vertical gap
the PMF is again symmetric. [7,12,14,16,21,22,24,25]. When the gap is only
an approximation to the true total energy gap we can expect deviations from
linear response. What is surprising, is that this effect for the Ru2+/Ru3+ is
as large as we found it to be.

4.3 Conclusion

The examples discussed in this section were meant to illustrate the use of
the vertical diabatic energy gap as reaction coordinate for the study of redox
reactions. First of all the energy gap proves to be an appropriate microscopic
degree of freedom to represent the solvent polarization in Marcus theory. Be-
cause of its special status in free energy perturbation methods it also leads
to a set of convenient and efficient expressions for the computation of the
reaction free energy change of redox reactions. The most intriguing aspect
of the energy gap is perhaps its potential for the computation of activation
free energies. As the connection to Marcus theory already suggests, it seems
to be a most suitable reaction coordinate to describe the for redox reactions
all important solvent reorganization. Because of limitations in current DFT
implementations, we focused on half reactions. The challenge is now to extend
these methods to full electron transfer and redox reactions.
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