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ABSTRACT

Proton solvation and transport is a central element in innumerable fundamental
chemical processes, from seemingly simple acid-base reactions to the exceedingly
complicated proton transport channels integral to cellular respiration. The uniqueness of
the hydrated proton, relative to other simple monovalent cations, complicates our
understanding of transport and solvation in even simple neat fluids. Fortunately,
computer modeling has proven valuable in describing the microscopic mechanism and
structures inherent in proton transport and solvation. This dissertation will describe the
use of computer modeling to characterize proton solvation in pure and mixed liquids with
an emphasis on the behavior near mixed dielectrics, as well as the transport mechanism
and defining solvation structures in the more complicated surroundings of a hydrated

electrolytic polymer.
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Theodore Christian Johann Dietrich von Grotthuss (1785-1822)

“Atoms are round bits of wood invented by Mr. Dalton” —unknown (1887)
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